
HLA Time Management and DIS
or

Putting things in Order

Richard M. Fujimoto
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280
fujimoto@cc.gatech.edu

Richard M. Weatherly
The MITRE Corporation

7525 Colshire Drive
McLean, VA 22102-3481

weather@mitre.org

Outline

• Challenges
– interoperability
– latency vs. causality

• Message ordering
– receive order
– priority order
– causal order
– causal and totally ordered
– time stamp order

• Summary / Why should I care about time management?

Challenge: Time Management Interoperability

Goal: provide services to support interoperability among federates with
different local time management schemes in a single federation execution.

Run Time
Infrastructure (RTI)

training federate:
real-time execution

constructive federate:
time-stepped
execution

Run Time
Infrastructure (RTI)

constructive federate:
event driven
execution

Run Time
Infrastructure (RTI)

live component:
real-time execution
w/ hard deadlines

Run Time
Infrastructure (RTI) multiprocessor

parallel simulation federate:
optimistic Time Warp
execution

Run Time Infrastructure
(RTI)

The Challenge:
• different simulations have different requirements concerning “causality”

and latency

• one time management structure must support interoperability among
federates with different causality and latency requirements.

Causality vs. Latency

Approach:
The HLA defines a variety of service with different latency, and causality
properties.
• Federates select the service(s) most appropriate for their requirements.
• Federates “get what they pay for.”

training
simulation

causality

latency

high

high

low

low

analysis
simulation

Causality and Latency Requirements

Causality

HLA provides several levels of causality with different latency characteristics

• “Things” happen in the real world in a certain order (e.g., cause & effect).
• It should appear that events in the simulated world happen in the same

order as the real world actions that they represent.

Observation: The key to producing causal distributed simulations is to
ensure that messages are delivered to federates in the correct order.

Goal: If event A “happens before” event B, the message for A should be
delivered before the message for B

Time (wallclock time)

Federate A
(tank)

Federate B
(target)

“fire”

“target
destroyed”

Federate C
(observer)

the observer should
see the tank fire
before the target is
destroyed.

event
message

real world simulated world

Transportation Services

FIFO
queue

Priority
Queue

Causal
Order

Queue

federate

Causal
& Total
Order

Queue

Time
Stamp
Order

Queue

receive
order

priority
order

causal
order

causal
& total
order

time
stamp
order

order specified on each send

In addition to message ordering, transportation services also specify Quality
of Service (reliable vs. best effort delivery)

improved causality

improved latency

Receive Order

Receive Order
• incoming messages delivered to federate in the order they were received
• in general, not sufficient to create causal simulations

Time (wallclock time)

Federate A
(tank)

Federate B
(target)

“fire”

“target
destroyed”

Federate C
(observer)

The “target destroyed” event is observed
before the “fire” event.

message delayed in network

may get anomalies if time between causally related events is comparable to
communication latencies (e.g., tightly coupled or scaled real-time
simulations).

latency

causality
low high

Receive order should be used if latency is primary concern, and some
non-causal behavior can be tolerated.

Priority Order

• incoming messages stored in a priority queue with priority equal to the
time stamp, deliver lowest time stamp first

• in general, not sufficient to create causal simulations

Priority order should be used if latency is a primary concern, but some
degree of ordering is considered desirable.

latency

causality
low high

Time (wallclock time)

Federate A
(tank)

Federate B
(target)

“fire”

“target
destroyed”

Federate C
(observer)

Messages seen in the correct order if the
federate requests them here

message delayed in network

Messages seen in the wrong order if the
federate requests them here

Messages are available for delivery as soon as they arrive.

Each federate consists of an ordered sequence of actions, where an action is an

(i) event, (ii) message send, or (iii) message receive. For two actions, A1 and A2:

• if A1 and A2 occur in the same federate and A1 precedes A2 , then A1 -> A2

• if A1 is a message send, and A2 is a receive of the same message, then A1 -> A2

• if A1 -> A2 and A2 -> A3, then A1 -> A3 (transitivity)

Actions that are not causally related are said to be concurrent.

Time (wallclock time)

Federate A

Federate B

E1

E2
E1 -> E4

Federate C

E3 E4

E2 -> E3

latency
causality

low high

Causal Order

• based on Lamport’s “happens before” relationship (->)
• if E1->E2, the message for E1 will be delivered before the message for E2

Causal Order Message Delivery

Time (wallclock time)

Federate A
(tank 1)

Federate B
(target)

Federate C
(observer)

“fire”

“target
destroyed” “destroyed message” delayed

to preserve causal order
(fire is seen before destroyed)

Causal order should be used if some degree of causal guarantees are
important, and some degree of latency increase can be tolerated.

Messages may not be available for delivery as soon as they arrive.

Causal Order
• if E1->E2, the message for E1 will be delivered before the message for E2

• messages for concurrent events may be delivered in any order; different
federates may receive messages for concurrent events in different orders

latency
causality

low high

Causal and Totally Ordered

Causal and totally ordered should be used if consistent ordering of
concurrent events is important.

Observation: causal order may lead to certain anomalies

Time (wallclock time)

Federate A
(enemy aircraft 1)

Federate B
(enemy aircraft 2)

Federate C
(pilot 1: orders to attack first plane to take off)

attack aircraft 1 (correct)

take off first

Federate D
(pilot 2: orders to attack second plane to take off)

take off second

attack aircraft 1 (incorrect!)

latency
causality

low high

Causal and totally ordered communication service (CATOCS)
• provides causal order message delivery
• in addition, all federates receiving messages for the same events receive

those messages in the same order.

Causal Order (and CATOCS): Limitations

No ordering guarantees for concurrent events

• Federate A has orders to fire upon first target to come with range
• Federate B comes into range first, then Federate C comes into range
• “Come into range” events are concurrent; causal order does not guarantee any

order of delivery
• B’s message is delayed in the network; C’s message is delivered to A first
• Cannon incorrectly fires upon C.

Time (wallclock time)

Federate A
(cannon: orders to fire at first tank to come into range)

Federate B
(tank 1)

Federate C
(tank 2)

comes within
range@2:00

comes within
range@2:01

fire event (fire at tank 2, incorrect !)

Causal Order (and CATOCS): Limitations

Hidden dependencies: dependencies between events that are not
conveyed explicitly via messages may not be preserved.

• Federate A issues orders for operation (diversion, then main attack)
• Federate B begins diversion attack
• Federate C begins main attack
• Messages from B and C are not causally related
• enemy federate observes the main attack before the diversion!

Time (wallclock time)

Federate A
(commander)

Federate B
(battalion 1)

Federate C
(battalion 2)

diversion
attack@4:00

main attack
@4:10

issue orders

Federate D
(enemy)

Time stamp Order

• based on the temporal happens before relationship (->t):
• E1 “happens before” E2 (E1 ->t E2) if E1 has a smaller time stamp than E2

• if E1 ->t E2, the message for E1 is delivered before the message for E2

Time stamp order should be used if completely causal simulations are
required (e.g., classical discrete event simulations).

latency
causality

low high

Time (wallclock time)

Federate A
(tank 1)

Federate B
(target)

Federate C
(observer)

fire@4:00

target
destroyed@4:01 “destroy message” delayed

until “fire” message is received
(fire event has a smaller time stamp)

• eliminates all temporal anomalies and produces repeatable results
• requires “lookahead” (schedule events into the future) or optimistic

message processing (e.g., Time Warp)

HLA Time Management

• provides “time advance” services that prevent federates from
receiving messages in their past

• allows different message ordering services to be used within a
single federate

• supports inclusion of as-fast-as-possible and real-time
simulations within a single federation execution*

• supports transparent inclusion of parallel simulations (even
optimistic simulations)

* provided as-fast-as-possible simulation delivers real-time performance

HLA Time Management: Why should I (a DIS person) care?

• allows you to continue using receive order if that meets your needs
• allows you to add causality for specific information where this is needed

(different levels of causality for different information in a single federate)
• supports federating DIS simulations with other simulations with stricter

causality requirements (e.g., constructive simulations)

Initial implementation of RTI supports receive, priority, and time stamp order

receive order

priority order
causal order
CATOCS

time stamp order

latencycausality

Message Ordering
“consumer reports” summary *

* latency properties not yet fully determined, pending further experimentation

as good as it gets

OK
could be better
don’t bet your job on it!

pretty good

